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Problem Formulation Wave Energy Converter

Wave Energy Converter

@ WEC is a device which captures the power of waves and transforms it
to electricity.

@ The electricity generation from waves could amount to more than
2TW ( 18000TWh//year)
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(MW ITEYCI  \Wave Energy Converter

Some Prototypes

TT . . First part of PTO, absorb.
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(MW ITEYCI  \Wave Energy Converter

Some Prototypes, cont.
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MRS TEYIN \WEC Modeling

WEC modeling

@ Newton's second law for rotation

Jé(t') = Mex(t) — MpTo(t) — Mhd(t) — M,ad(t)

@ 0(t) : Float angle
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LT
WEC modeling, cont.

° J: Mass inertia moment

o My (t): Wave excitation moment

e Mpro(t): PTO moment

® Mpy(t) : Hydrostatic moment (due to gravity)

/\/lhd(t) = K(g(t)
o M,aq(t): Radiation moment (due to the float movement)

Mg (£) = / " bt — D)(r)d()

=0
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LT
WEC modeling, cont.

e J, K, h(t) can be derived from boundary element methods, estimated
via dedicated experiments or both.

@ State space equation,

{ x(t) = Ax(t) + B(Mex(t) — Mpro(t))
y(t) = Cx(t)

@ Where
o x(t): State

o y(t)= { 28 } : Output
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Control Objective

e Find Mpro(t) to maximize

/ (t)Mpro(t)dt

o 4(t) : efficiency coefficient, that depends on (t)Mpro(t)

. { 0.7, if 0Mpro > 0

0f17 =143, if éMpTo <0

@ Pay two times more expensive to use energy from network
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MEIENNSIITEIA I Control Objective

Control Objective, cont.

@ Problems

@ Even the control system is linear, the cost function is nonlinear.
Q x(t), M (t) are not directly available.
© Input and state constraints.

@ Solutions

@ Adaptive PI control.
@ Model predictive control.

Optimal Control of WEC T



Outline

© Adaptive PI Control
@ State of the art control law
@ PI control for regular waves
@ Adaptive PI control
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Adaptive Pl Control State of the art control law

Intermittent adaptive Pl control

@ Current state of the art.
@ Two phases: offline and online.
o Offline phase
@ Select a set of representative sea states.
@ Calculate the "optimal” Pl gains for each sea state.
@ Online phase

@ Identify the current sea state, usually by its spectrum.
@ Pl gains are adapted online by a look up table.
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Adaptive Pl Control State of the art control law

Problems

@ Offline phase

e The PI gains are optimized by a griding method (brute-force search).
o No proof of optimality.

@ Online phase

e Only average on-line estimations of sea states have been proposed,
with time windows from 10 min. to 30 min.
e Hence, the PI control gains are not continuously updated.
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Adaptive Pl Control Pl control for regular waves

Pl control for regular waves

@ Assumption: Me(t) is available and

Mex(t) = Aysin(wt + ¢)

o WEC model in the frequency domain

v(jw) _ 1
Mex(jW) - MPTO(jW) Z(./W)

@ Where
o v(jw) = O(jw)

o Z(jw) : intrinsic impedance
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Adaptive Pl Control Pl control for regular waves

Pl control for regular waves, cont.

@ Problem: Design a linear control law
Mpro(jw) = K(jw)v(jw)

that maximizes the cost

@ Denote
K(w) = Rk + jXk, Z(jw) = R + jX;

@ Theorem

A2 (uRk + %(,u - %)Rk(),g—: - arctan(%)))

Pavr —
2((Xz + Xk)2 + (Rz + R)?)
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Rlecelleizias
Result of Falness et al., with =1

@ With =1, recover the well-known result of Falness et al.

A2 Ry

Pavr —
2((Xz + Xk)2 + (Rz + R)?)

P,yr is maximal, iff
Xk ==Xz, Rk = Rz

@ Hence
v(jw) _ 1
Mex(jw) 2R, (w)

@ P, is maximal iff v(t) is in phase with Mg (t)

@ Are the results of Falness et al. correct also for p < 17
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Falness et al., cont.
o Let's take X, = — X, and R, = R, for P,,, with = 0.7

@ P, <0 for all w < 5.5(rad/sec) (where the wave has the most
energy)
@ Solution is not optimal, since one can take Ry = X =0

Ay =V2

w(rad/sec)
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Adaptive Pl Control Pl control for regular waves

Pl control for regular waves, cont.

@ It can be shown that the cost
function is convex. Hence the
optimal solution is unique.

o v(t) is generally not in phase
with Mg (), since Xy # —X;.

5 6
 (rad/sec)
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Adaptive Pl Control Pl control for regular waves

Pl control for regular waves, cont.

e Up to now, for each regular wave M, (t) = Aysin(wt + ¢), the

frequency response of the optimal controller is calculated

K(w) = Ri(w) + jXk(w)

e If K(jw) is chosen as a PI controller

Ki

@ Then
Kp = Kk(w), Ki = —wXi(w)
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Adaptive Pl Control Pl control for regular waves

Problems

Q@ Mg, (t) is not measurable.
@ Real Mg(t) is not a sinusoid.

© Only the second problem is addressed now.

Optimal Control of WEC N B B

21/49



Adaptive Pl Control Adaptive Pl control

Frequency estimation

@ Real Mg (t) is not a sinusoid, but it is not far from the sinusoid.

o Idea: approximate ON-LINE Mc,(t) as
Mex(t) = Aw(t)sin(w(t)t 4 ¢(t))
where A, (t), w(t), ¢(t) are parameters.

o Classical problem.
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Adaptive Pl Control Adaptive Pl control

Frequency estimation, cont.

@ Unscented Kalman filter is used to estimate A, (t), w(t), ¢(t)

@ Details are not presented here.
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Adaptive Pl Control Adaptive Pl control

Frequency estimation, cont.

Optimal Control of WEC T



Adaptive Pl Control Adaptive Pl control

Adaptive Pl control

The adaptive Pl control algorithm is summarized as follows,

1. Measure p(t), v(t)

2. Estimate Mex(t), N - WEC measurements (p(1), v(t))
Aw(t), w(t), o(t)
Mex(t) = Aw(t)sin(w(t)t+¢(t))

3. Calculate the control action

MpTo(t) = Kp(W)V(t) + K,'(W) /Ot V(T)dT
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© Model Predictive Control
@ Model prediction control - Basic concepts
@ Wave excitation moment estimation

@ Wave excitation moment prediction
o Weighted MPC
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Model Predictive Control Model prediction control - Basic concepts

Model predictive control - Basic concepts

model-based
optimizer process
[
reference input output
—> —_— —_—
() y(t)
BE

measurements

e u(t)
1

A model of the process is used to predict the future evolution of the
process to optimize the control signal
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Model Predictive Control Model prediction control - Basic concepts

Receding horizon philosophy

" Predicted outputs

At time k: Solve an optimal control
problem over a finite future horizon

of N steps Manipulated
ﬂF In’;uts

Ui

[

min J(k), It 1
u(k),u(k+1),...,u(k+N-1) ‘:

{ Upnin < U(k +J) < Umax,

S.T. <

Ymin < y(k+J)

J(k) : cost function

teN+1

@ Only apply the first move u*(k)
@ At time k + 1: Get new measurements, repeat the optimization. And

soon...
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Model prediction control - Basic concepts
Why MPC for WEC?

@ Maximize the extracted energy.
@ Input and state constraints are incorporated in the design phase.
@ Nonlinear efficiency coefficient is considered in the design phase.

@ Wave prediction is explicitly used.
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MPC problems

@ Wave excitation moment at the present and in the future are required

@® Wave moment estimation
® Wave prediction

@ Nonlinear and non-convex optimization problem due to the nonlinear
efficiency coefficient
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WIT WL EC ISV E I \Wave excitation moment estimation

Wave excitation moment estimation

o Idea: Use a WEC model + measured outputs to estimate Me,(t)

@ Not a new idea
o Me(t) is decomposed as, P. Kracht et al., 2014

Mex(t) = _ aj(t)sin(wjt) + B;(t)cos(w;t)

j=1

where w; are chosen

o «j(t), Bj(t) are estimated online using Luenberger observer
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Wave excitation moment estimation
Wave excitation moment estimation, cont.

@ The choice of wj is crucial

@ The approach was experimentally tested at the Aalborg university

o Slightly overestimate the amplitude
o Non-negligible delay

@ Not reliable in practice, since w; are time-varying

y Ideal Obs.
5N £ Implemented Obs.

Tox [NM]
o

o7 98 99 100
time [s]
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WIT WL EC ISV E I \Wave excitation moment estimation

Random walk approach

o Idea: see M (k) as a state
Mex(k + 1) = Mex(k) + €(k)

€(k) : variation of M, (k), and is considered as a noise

@ Hence
EA R R IFAR L
y =[C D][/\ZX]_DMPTO
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Wave excitation moment estimation
Random walk approach, cont.

@ The problem of estimating Mex(k) becomes the state estimation
problem

@ Kalman filter is used for this purpose

@ Clearly, the approach can be used to estimate any kind of M, (not
necessarily periodic)
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WIT WL EC ISV E I \Wave excitation moment estimation

Experimental results
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Model Predictive Control Wave excitation moment prediction

Wave excitation moment prediction

e Given wave moments y(k), k =0,1,..., ko until time ko

@ Predict wave moments at times ko + 1, ko +2,..., ko + N

2

Wave moment
o
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Model Predictive Control Wave excitation moment prediction

AR model based forecast
o ldea: Wave moment at time k is a linear function of a number p of

its past values

y(k+1)=ay(k)+ ay(k—1)+... +apy(k —p+1)

e {aj,ay...,ap} : parameters
@ {aj,ar...,ap} can be found by minimizing the one step ahead
prediction error

k
Lmin > 00) - Zam@—»
Jj=p+1
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Model Predictive Control Wave excitation moment prediction

AR model based forecast, cont.

@ Least square problem. Solution can be found analytically
@ Result is not satisfactory for prediction

@ Fusco’s and Ringwood's idea: Long Rang Predictive Identification, i.e.
minimizing not only the one step, but also the two-step, ..., the
h—step prediction errors

@ Nonlinear least square optimization problem. Batch-processing based
solution.
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Model Predictive Control Wave excitation moment prediction

Filter bank based forecast

Previous method: iterative forecast

@ ldea: forecast each horizon independently from the others

N models for forecasting N steps ahead

y(k+1) = any(k) + apy(k = 1)+ ... +apy(k —p+1)
y(k+2) = axy(k) + axy(k — 1)+ ...+ agpy(k — p+1)

y(k+ N) = an1y(k) + anoy(k — 1)+ ...+ anpy(k — p+ 1)

Unknown parameters a;;, i = 1, N, j = 1, p are estimated by Kalman
filter
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Model Predictive Control Wave excitation moment prediction

Filter bank based forecast

@ To forecast N steps ahead, one needs N Kalman filters
@ Computational complexity is higher than iterative forecast

@ Performance is better
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Weighted MPC
Nonlinear MPC

o Finally, we are getting to the point
@ Recall the state space equation of WEC

{ x(k +1) = Ax(k) + BMex(k) — Bu(k)
y(k) = Cx(k) + DMex(k) — Du(k)

where u(k) = MpTo(k).

@ Cost function at time k,

o™ ) Zu k+ j)v(k + j)u(k + )

1 - nonlinear efficiency coefficient
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WSl
Nonlinear efficiency function

@ Taking into account directly p in the cost gives rise to a nonlinear
and nonconvex optimization problem

min(U(k)TH(H)U(k)+f( )T U(K))
St Umin < U(k +J) < Umax,Jj = 0, N

@ Issues

o Computational load

(.000100100110101001001010010100040010011010
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o Difficult to investigate:
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Weighted MPC

o Consider again the cost function, for p =1

J= rlr](all())((u(k)v(k) +u(k)v(k+1)+u(k+1)v(k+1)+...)

@ Weights are equal for all future costs
@ This is not reasonable, since

e Wave prediction performance is better for a short horizon, than for a
large horizon.

o It is better to put high weights on the current obtained energy for the
first few time instants.
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WSl
Weighted MPC, cont.

@ In the result

J= r&w(%(wou(k)v(k) + wou(k)v(k +1)+wiu(k + 1)v(k+1)+...)

® wp, Wi, ..., wn_1 : tunning coefficients

@ We usually choose
wWo > W1 > ...> WN_q

o QP problem
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@ Experimental Results
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Experimental Setup

Electrical actuator to apply @ Tests in Aalborg University

any specified motion or force . . . .
e basin on a pivoting-buoy point
B i absorber.

\W @ 4 different sea states are

considered.

Bearing at arm pivot
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Experimental Results

Experimental results, cont
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Conclusions

@ Two main solutions are proposed for WECs with non-perfect PTO

e Adaptive Pl: optimal control for regular waves, wave force and
dominant wave frequency estimation.

e Model predictive control: wave estimation, wave prediction, weighted
MPC, QP problem.

@ Successfully implemented for a real system.

@ Perspective: Decentralized/distributed control, stochastic MPC.
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Experimental Results

THANK YOU
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