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Context and applications

Distributed State Estimation (DSE)

Each agent/node (limited sensing, computation and communication capabilities):
1 Sharing information obtained by its embedded sensors within its neighborhood
2 Computing a local state estimate by fusing information (consensus)

Providing increased autonomy, scalability, computational efficiency, fault-tolerance, etc.

Applications: multi-vehicle localization, surveillance or tracking missions by sensor networks.

Fig. 1: Communication graph representing the network between
nodes/agents

Fig. 2: Envisaged application
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Moving Horizon Estimation

Moving Horizon Estimation (MHE):

optimal state observer approach (duality with MPC)

computing a state estimate by minimizing a cost function involving a plant model and a finite sequence of past
measurements.

t-N t-1 t+1

Estimation Window

time

y

Sensors Measurements

MHE Estimate

Fig. 3: Illustration of MHE

Compared to classical DSE (e.g., Distributed Kalman Filter
Distributed Kalman Filter (DKF) / Distributed Extended
Kalman Filter Distributed Extended Kalman Filter (DEKF))

Advantage:

• Account for constraints and non-linearities in its
formulation.

Drawback:

• Large computation time due to an online optimization
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Previous works on DMHE

Distributed Moving Horizon Estimation approach:
Using neighborhood measurements, introducing different ways to fuse information, different consensus steps:
consensus on the arrival cost [Farina et al. 2010], information-based consensus [Battistelli 2018].

→ Ensuring stability of the estimation error dynamics, under the assumptions of network connectivity and

collective observability [Battistelli 2018].

Reducing the computation burden:
Using a DMHE with a ”pre-estimation” strategy based on a Luenberger observer [Venturino et al. 2020]
→ Empowering real-time implementation on low-cost processors.
→ Considering linear systems with linear measurements.
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Motivations and objectives

Motivations:

Increasingly recurrent use of low-cost embedded sensors (e.g., lidar, ultra-wideband mounted on
mobile robots) providing nonlinear measurements (e.g., angle and/or distance)

Objectives:
→ Developing DMHE algorithms with pre-estimation able to handle nonlinear measurements.

→ Ensuring the feasibility of a real-time application of this approach on low-cost processors.

First application:
→ Collaborative localization of a fleet of UAVs
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MAS and communication modeling

Considered Multi-Agent System (MAS): fleet of na
UAVs, equipped with sensors, able to send and receive
information through communication links with
neighbors.
Na = {1, 2, . . . , na}: set of all the agents (nodes).
E ⊆ Na ×Na: set of all edges, communication links
between agents.

UAV1 UAV2

UAV3UAV4

d1,2

d2,3d4,1

x

y

z

Fig. 4: Cooperative localization for a UAVs fleet

Remark 2.1

Information shared: either agent i measurements y i provided
by its embedded sensors, or its prior estimation of the entire
MAS state x̂ i .

Assumption 1

Limited communication range → only one-step (”one-hop”)
neighbors communication considered.

Communication network G = (Na, E): undirected
connected graph.
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Definition and notation

1

3

4

2

Local

Regional

Global

Fig. 5: Example of MAS communication network graph with 4 agents

For agent 1:

Local information referring only to the local
agent (e.g., x1 its local state vector)

Regional information referring to its one step
neighborhood N 1

a (e.g., ȳ 1 its regional
measurement)

Global information considering the entire MAS
(e.g., x , the global MAS state vector)

DSE for cooperative localization: each UAV uses regional information to estimate the state (position and speed) of
each UAV of the entire MAS.

Distributed MHE with pre-estimation using EKF for Nonlinear Measurements Borelle M - 11/16/2023 8 / 17



Introduction Distributed State Estimation for cooperative localization DMHE approach for cooperative localization Simulation results Conclusion

Dynamic modeling of the UAV and global MAS

Dynamics of each UAV i ∈ Na of the MAS: discrete-time Linear Time-Invariant (LTI) model

x i
t+1 = Aix i

t + B iui
t + B iw i

t (1)

x i : state vector ui : input vector w i : input noise vector, zero mean noise of covariance Q i

Ai : evolution matrix B i : input matrix

ui + w i : available input vector (noisy acceleration measurement from Inertial Measurement Unit).

Dynamics of the global MAS

xt+1 = Axt + But + Bwt ∈ Rnx (2)

x = col(x1, x2, . . . , xna ) = [(x1)⊤, (x2)⊤, . . . , (xna )⊤]⊤: collective (global) state
u = col(u1, . . . , una ): collective input
w = col(w1, . . . ,wna ): collective noise input
A = diag(A1, . . . ,Ana )
B = diag(B1, . . . ,Bna )
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Assumption and measurement model

Restrained communication:
Each agent i does not communicate with the neighbors its available input vector ui + w i

→ Inputs of other agents are seen as unknown inputs by the agent i observer
Global estimated input:

û i = col(0, . . . , ui + w i , . . . , 0) ∈ Rnu (3)

Measurements locally performed by each agent i

y i
t = hi (xt) + ν it , i ∈ Na (4)

with the output vector y i and the measurement noise ν i ∈ V i of covariance R i .

Regional measurements:

ȳ i
t = col

(
y i
t , y

j1
t , . . . , y

j
nia
t

)
, i ∈ Na and [j1, ..., jnia

] ∈ N i
a (5)

Remark 2.2

Nonlinear dependence on the MAS state considered with the measurement function hi .
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Local optimization problem of standard DMHE

At time t, each agent i ∈ Na determines (based on regional information) its sequence of global MAS state estimate
[x̂ i

t−N , . . . , x̂
i
t ] by solving:

Standard DMHE constrained optimization
problem [Battistelli 2018; Farina et al. 2010]

min
[x̂ i
t−N

,...,x̂ it ]
J iN(·) (6)

s.t.x̂ i
k ∈ X , ȳ i

k+1 − h̄i (x̂ i
k+1) ∈ V̄ i , (7)

∀k = t − N, . . . , t − 1.
t-N t-1 t+1

Estimation Window

time

y

Sensors Measurements

MHE Estimate

Fig. 6: Illustration of Moving Horizon Estimation (MHE)

N: estimation window length

Cost function

J iN(·) =
t∑

k=t−N

∥∥∥ȳ i
k − h̄i (x̂ i

k )
∥∥∥2
(R̄i )

−1
+

t−1∑
k=t−N

∥x̂ i
k+1 − Ax̂ i

k − Bû i
k∥

2
Q−1 + Γit(·) (8)
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Local optimization problem of DMHE with EKF pre-estimation

At time t, each agent i ∈ Na determines (based on regional information) its global MAS state estimate x̂ i
t−N|t of xt−N

DMHE with EKF pre-estimation constrained
optimization problem

min
x̂ i
t−N

J iN(·) (9)

s.t.x̂ i
k+1 = x̂ i

k+1|k + K i
k

(
ȳ i
k+1 − h̄i (x̂ i

k+1|k )
)
, (10)

x̂ i
k+1|k = A x̂ i

k + B û i
k (11)

x̂ i
k ∈ X , ȳ i

k+1 − h̄i (x̂ i
k+1) ∈ V̄ i , (12)

∀k = t − N, . . . , t − 1.

Cost function

J iN(·) =
t∑

k=t−N

∥∥∥ȳ i
k − h̄i (x̂ i

k )
∥∥∥2
(R̄ i )−1

+ Γit(·) (13)

Pre-estimation EKF (with classical gain update)

Using the pre-estimation observer → reconstruct [x̂ i
t−N , . . . , x̂

i
t ] and keep x̂ i

t .

Compared to standard DMHE, less optimization variables → reduced computation time [Venturino et al. 2021]
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L-step information consensus

Penalty function / arrival cost

Γi
t(.) = ∥x̂ i

t−N − x̄ i
t−N∥2(Π̃i

t−N
)−1 (14)

A priori state estimate and weight matrix obtained with a
L-step consensus on information [Battistelli 2018]

1 Initialization:

P i
t−N,0 = (Πi

t−N)
−1 (information matrix)

ξit−N,0 = P i
t−N,0x̂

i
t−N|t−1 (information vector)

2 Consensus step: exchanging P i
t−N,0 and ξit−N,0 with

neighbors then compute the weighted average.

P i
t−N,l+1 = ki,iP

i
t−N,l +

∑
j∈N i

a

ki,jP
j
t−N,l (15)

ξit−N,l+1 = ki,iξ
i
t−N,l +

∑
j∈N i

a

ki,jξ
j
t−N,l (16)

with l ∈ {0, . . . , L− 1}
3 After L-steps of consensus, the arrival cost (14) uses

Π̃i
t−N = (P i

t−N,L)
−1 (17)

x̄ i
t−N = (P i

t−N,L)
−1ξit−N,L (18)

Advantages: allow to broadcast information deeper and take into account the confidence of each agent on each
component of the state.
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Observability rank-based weights technique

Observability rank-based weights ki,j in consensus steps → extension of [Venturino et al. 2022] to the
nonlinear case

Regional observability matrix of agent i over the estimation window [t − N, t]

Ōi
N,t =

[
(C̄ i

t−N)
⊤ (C̄ i

t−N+1A)
⊤ · · · (C̄ i

tAN)⊤
]⊤

, with C̄ i
t−N =

∂ h̄i

∂x

∣∣∣∣
x̂ i
t−N

(19)

ρiO: reliability of agent i , exchanged with neighbors ρiO = rank(Ōi
N,t) (20)

ki,j : ratio of ρiO averaged among the neighbors j ∈ N i
a

ki,j =
ρjO∑

l∈N i
a
ρlO

. (21)

Method suitable for distributed schemes → mitigate unobservability issues
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Simulation cooperative localization of an UAVs fleet

Assumptions:

Communication network: undirected time-invariant
connected graph

No communication failure

Considered system:

Fleet of na = 3 UAVs

Linear dynamics

Non linear measurements (distance between neighbors
UAVs and speed norm)

1

2

3

Fig. 7: Communication graph and distance measurement capabilities
between the three UAVs
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Results on the constrained cooperative localization of an UAVs fleet

Comparison

DMHE-pre-EKF: our proposed DMHE approach with EKF
pre-estimation

DMHE-1: standard DMHE algorithm [Battistelli 2018]
(without pre-estimation) extended to nonlinear measurements

DEKF-CI: consensus-based on information distributed EKF of
[Battistelli et al. 2015]

DMHE-pre-EKF-2-step: our DMHE-pre-EKF observer with
2-step consensus (i.e., L = 2)

RMSE RMSE final values τ (s)
DEKF-CI 2.7651 0.7059 0.0004
DMHE-1 1.6371 0.6906 0.4946

DMHE-pre-EKF 1.7009 0.6104 0.0413
DMHE-pre-EKF-2-step 1.6709 0.5980 0.0433

Tab. 1: Comparative results of the different estimation techniques

5 10 15 20 25 30

Sample time

5

10

15

20

M
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DEKF-CI

DMHE-1

DMHE-pre-EKF

DMHE-pre-EKF-2-step

Fig. 8: Averaged RMSE among all the agents and all the trials
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Fig. 9: Averaged computation time τ (s) among all the agents and
all the trials
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Conclusion

Concluding remarks

Contribution: DMHE algorithm with EKF-based pre-estimation for constrained cooperative localization of a
Multi-Agent System with nonlinear measurements.

Simulation results confirm the interest of the proposed method: constraints handling, reducing computation load,
preserving estimation accuracy (compared to standard DMHE).

Associated paper

M. Borelle, S. Bertrand, C. Stoica, T. Alamo, E.F. Camacho, “Cooperative localization of an UAV fleet using distributed MHE with
EKF pre-Estimation and nonlinear measurements”, 27th International Conference on System Theory, Control and Computing,
Timisoara, Romania, 2023.

Current work

Practical implementation of the proposed approach on a real MAS composed of UAVs, UGVs (flight arena of
CentraleSupélec).
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Thanks for your attention !

Questions ?
matthieu.borelle@centralesupelec.fr
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Prior Πi weight update

The arrival cost is designed to approximate the untractable full information problem (that processes all the
information from initial time).

When the system is non-linear and constrained, an algebraic update expression for the arrival cost rarely exists.
→ approximate the arrival cost for the constrained problem with the one of the unconstrained problem [Rao et al.
2003].

Thus, the positive definite matrix Πi
t−N+1 is obtained from the matrix Π̃i

t−N using the discrete-time Riccati equation

associated to an Extended Kalman filter (as in [Rao et al. 2003] for the centralized case):

Πi
t−N+1|t−N = AΠ̃i

t−NA⊤ + BQ iB⊤ (22)

Πi
t−N+1 = Πi

t−N+1|t−N − Πi
t−N+1|t−N(C̄

i
t−N+1)

⊤
(
C̄ i

t−N+1Π
i
t−N+1|t−N(C̄

i
t−N+1)

⊤ + R̄ i
)−1

C̄ i
t−N+1Π

i
t−N+1|t−N (23)

with Q i = diag(Q1, . . . ,Qna )
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EKF pre-estimation observer

For k ∈ {t − N, . . . , t}, the matrix gain K i
k is computed using the classical EKF observer update. The step t − N consists

of initializing the pre-estimation error covariance matrix Πi
pre,t−N|t−N

= Π̃i
t−N . Then, for k ∈ {t − N + 1, . . . , t}, the

prediction of the covariance evolution is performed as follows:

Πi
pre,k|k−1 = AΠi

pre,k−1|k−1A
⊤ + BQ iB⊤ (24)

avec Πi
pre,k|k−1

the a priori estimation matrix of covariance of the estimation error at time k.

The optimal Kalman gain (10) is computed as follows:

K i
k = Πi

pre,k|k−1(C̄
i
k )

⊤(S i
k )

−1 (25)

with the pre-estimation error covariance matrix:

Πi
pre,k|k = (Inx − K i

k C̄ i
k )Π

i
pre,k|k−1 (26)

and S i
k the innovation covariance:

S i
k = C̄ i

kΠ
i
pre,k|k−1(C̄

i
k )

⊤ + R̄ i (27)

Remark: to ensure robustness of the estimation, taking into account the uncertainties on the input measurement of the
other agents, we artificially increase the corresponding diagonal element of Q i .
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Proposed DMHE with EKF pre-estimation algorithm

Algorithm 1 DMHE with pre-estimation procedure Part 1

1: Initialization: ∀i ∈ Na, at the first time step t = 0
2: initialize Πi

0, x̂ i
0

3: collect a first local measurement y i
0 and the knowledge on the initial collective input û i

0

4: receive from the neighborhood j ∈ N i
a their measurements y j

0

5: Online: ∀i ∈ Na, ∀t > 0
6: collect the local measurement y i

t and the knowledge on the collective input û i
t using (4) and (3)

7: receive from the neighbors j ∈ N i
a the collected measurements in the step 6, form and store ȳ i

t
8: if 1 ⩽ t ⩽ N then
9: set the horizon length Nw = t

10: else
11: set the horizon length Nw = N
12: end if
13: compute Oi

Nw ,t and ρi
O according to (19) and (20)

14: exchange ρj
O with j ∈ N i

a
15: compute the kij components according to (21)

16: perform L steps of the consensus algorithms (16) with the initialization to get Π̃i
t−Nw

and x̄ i
t−Nw

(17)-(18)
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Proposed DMHE with EKF pre-estimation algorithm

Algorithm 2 DMHE with pre-estimation procedure Part 2

17: solve the local optimization problem of DMHE with EKF pre-estimation, minimizing J i
Nw

as in (13) and (14) subject to the

constraints (10)-(12)

18: store the solution x̂ i
t−Nw |t , x̂ i

t−Nw+1|t and the corresponding estimate x̂ i
t|t

19: if 1 ⩽ t ⩽ N then
20: set x̄ i

0|t+1 = x̂ i
0|t

21: set Πi
0|t+1 = Π̃i

0|t
22: else
23: compute Πi

t+1−N according to (22)-(23)

24: compute prediction x̄ i
t+1−N = x̂ i

t+1−N|t
25: end if
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